Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Mol Diagn ; 24(4): 320-336, 2022 04.
Article in English | MEDLINE | ID: covidwho-1895234

ABSTRACT

Previous studies have described reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal/oropharyngeal swab and saliva samples. This multisite clinical evaluation describes the validation of an improved sample preparation method for extraction-free RT-LAMP and reports clinical performance of four RT-LAMP assay formats for SARS-CoV-2 detection. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva samples from asymptomatic and symptomatic individuals across health care and community settings. For direct RT-LAMP, overall diagnostic sensitivity (DSe) was 70.35% (95% CI, 63.48%-76.60%) on swabs and 84.62% (95% CI, 79.50%-88.88%) on saliva, with diagnostic specificity of 100% (95% CI, 98.98%-100.00%) on swabs and 100% (95% CI, 99.72%-100.00%) on saliva, compared with quantitative RT-PCR (RT-qPCR); analyzing samples with RT-qPCR ORF1ab CT values of ≤25 and ≤33, DSe values were 100% (95% CI, 96.34%-100%) and 77.78% (95% CI, 70.99%-83.62%) for swabs, and 99.01% (95% CI, 94.61%-99.97%) and 87.61% (95% CI, 82.69%-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and diagnostic specificity were 96.06% (95% CI, 92.88%-98.12%) and 99.99% (95% CI, 99.95%-100%) for swabs, and 80.65% (95% CI, 73.54%-86.54%) and 99.99% (95% CI, 99.95%-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use cases, including frequent, interval-based direct RT-LAMP of saliva from asymptomatic individuals who may otherwise be missed using symptomatic testing alone.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva , Sensitivity and Specificity
2.
Viruses ; 13(4)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1194712

ABSTRACT

SARS-CoV-2 virus was first detected in late 2019 and circulated globally, causing COVID-19, which is characterised by sub-clinical to severe disease in humans. Here, we investigate the serological antibody responses to SARS-CoV-2 infection during acute and convalescent infection using a cohort of (i) COVID-19 patients admitted to hospital, (ii) healthy individuals who had experienced 'COVID-19 like-illness', and (iii) a cohort of healthy individuals prior to the emergence of SARS-CoV-2. We compare SARS-CoV-2 specific antibody detection rates from four different serological methods, virus neutralisation test (VNT), ID Screen® SARS-CoV-2-N IgG ELISA, Whole Antigen ELISA, and lentivirus-based SARS-CoV-2 pseudotype virus neutralisation tests (pVNT). All methods were able to detect prior infection with COVID-19, albeit with different relative sensitivities. The VNT and SARS-CoV-2-N ELISA methods showed a strong correlation yet provided increased detection rates when used in combination. A pVNT correlated strongly with SARS-CoV-2 VNT and was able to effectively discriminate SARS-CoV-2 antibody positive and negative serum with the same efficiency as the VNT. Moreover, the pVNT was performed with the same level of discrimination across multiple separate institutions. Therefore, the pVNT is a sensitive, specific, and reproducible lower biosafety level alternative to VNT for detecting SARS-CoV-2 antibodies for diagnostic and research applications. Our data illustrate the potential utility of applying VNT or pVNT and ELISA antibody tests in parallel to enhance the sensitivity of exposure to infection.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Aged , Antibodies, Neutralizing/blood , COVID-19/blood , COVID-19/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Female , Humans , Lentivirus/genetics , Male , Middle Aged , Neutralization Tests , Reproducibility of Results , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
Viruses ; 13(1)2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-1067778

ABSTRACT

Ferrets were experimentally inoculated with SARS-CoV-2 (severe acute respiratory syndrome (SARS)-related coronavirus 2) to assess infection dynamics and host response. During the resulting subclinical infection, viral RNA was monitored between 2 and 21 days post-inoculation (dpi), and reached a peak in the upper respiratory cavity between 4 and 6 dpi. Viral genomic sequence analysis in samples from three animals identified the Y453F nucleotide substitution relative to the inoculum. Viral RNA was also detected in environmental samples, specifically in swabs of ferret fur. Microscopy analysis revealed viral protein and RNA in upper respiratory tract tissues, notably in cells of the respiratory and olfactory mucosae of the nasal turbinates, including olfactory neuronal cells. Antibody responses to the spike and nucleoprotein were detected from 21 dpi, but virus-neutralizing activity was low. A second intranasal inoculation (re-exposure) of two ferrets after a 17-day interval did not produce re-initiation of viral RNA shedding, but did amplify the humoral response in one animal. Therefore, ferrets can be experimentally infected with SARS-CoV-2 to model human asymptomatic infection.


Subject(s)
Asymptomatic Diseases , COVID-19/virology , Disease Models, Animal , SARS-CoV-2/physiology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/pathology , COVID-19/transmission , Female , Ferrets , Genome, Viral/genetics , Mutation , Nasal Mucosa/virology , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Viral Load , Virus Shedding
4.
Viruses ; 13(2)2021 02 03.
Article in English | MEDLINE | ID: covidwho-1060766

ABSTRACT

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG's antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus OC43, Human/drug effects , Influenza A Virus, H1N1 Subtype/drug effects , Respiratory Syncytial Virus, Human/drug effects , SARS-CoV-2/drug effects , Thapsigargin/pharmacology , Animals , Antiviral Agents/therapeutic use , Betacoronavirus/physiology , Cell Line , Cell Line, Tumor , Cells, Cultured , Coronavirus OC43, Human/physiology , Endoplasmic Reticulum Stress , Humans , Influenza A Virus, H1N1 Subtype/physiology , Mice , Microbial Sensitivity Tests , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Respiratory Syncytial Virus, Human/physiology , Ribavirin/pharmacology , SARS-CoV-2/physiology , Thapsigargin/therapeutic use , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL